Asymptotic behaviour of the posterior distribution in overfitted mixture models
نویسندگان
چکیده
منابع مشابه
IMAGE SEGMENTATION USING GAUSSIAN MIXTURE MODEL
Stochastic models such as mixture models, graphical models, Markov random fields and hidden Markov models have key role in probabilistic data analysis. In this paper, we have learned Gaussian mixture model to the pixels of an image. The parameters of the model have estimated by EM-algorithm. In addition pixel labeling corresponded to each pixel of true image is made by Bayes rule. In fact, ...
متن کاملImage Segmentation using Gaussian Mixture Model
Abstract: Stochastic models such as mixture models, graphical models, Markov random fields and hidden Markov models have key role in probabilistic data analysis. In this paper, we used Gaussian mixture model to the pixels of an image. The parameters of the model were estimated by EM-algorithm. In addition pixel labeling corresponded to each pixel of true image was made by Bayes rule. In fact,...
متن کاملComparison of Criteria for Choosing the Number of Classes in Bayesian Finite Mixture Models
Identifying the number of classes in Bayesian finite mixture models is a challenging problem. Several criteria have been proposed, such as adaptations of the deviance information criterion, marginal likelihoods, Bayes factors, and reversible jump MCMC techniques. It was recently shown that in overfitted mixture models, the overfitted latent classes will asymptotically become empty under specifi...
متن کاملAsymptotic Analysis of Binary Gas Mixture Separation by Nanometric Tubular Ceramic Membranes: Cocurrent and Countercurrent Flow Patterns
Analytical gas-permeation models for predicting the separation process across membranes (exit compositions and area requirement) constitutes an important and necessary step in understanding the overall performance of membrane modules. But, the exact (numerical) solution methods suffer from the complexity of the solution. Therefore, solutions of nonlinear ordinary differential equations th...
متن کاملOn the Second Order Behaviour of the Bootstrap of L_1 Regression Estimators
We consider the second-order asymptotic properties of the bootstrap of L_1 regression estimators by looking at the difference between the L_1 estimator and its first-order approximation, where the latter is the minimizer of a quadratic approximation to the L_1 objective function. It is shown that the bootstrap distribution of the normed difference does not converge (eit...
متن کامل